如图所示,四棱锥P—ABCD中,ABAD,CDAD,PA底面ABCD,PA=AD=CD=2AB=2,M为PC的中点。(1)求证:BM∥平面PAD;(2)在侧面PAD内找一点N,使MN平面PBD;(3)求直线PC与平面PBD所成角的正弦。
已知函数, (1)求函数的最小正周期 (2)若函数在处取得最大值,求的值.
函数,其中为常数. (1)证明:对任意,的图象恒过定点; (2)当时,判断函数是否存在极值?若存在,求出极值;若不存在,说明理由; (3)若对任意时,恒为定义域上的增函数,求的最大值.
设是等差数列,是各项都为正数的等比数列,且,,(1)求,的通项公式;(2)求数列的前n项和.
设的内角所对的边分别为且. (1)求角的大小;(2)若,求的周长的取值范围.
已知为锐角,且,函数,数列{}的首项. (1)求函数的表达式; (2)在中,若,,BC=2,求的面积 (3)求数列的前项和.