如图所示,四棱锥P—ABCD中,ABAD,CDAD,PA底面ABCD,PA=AD=CD=2AB=2,M为PC的中点。(1)求证:BM∥平面PAD;(2)在侧面PAD内找一点N,使MN平面PBD;(3)求直线PC与平面PBD所成角的正弦。
在△中,已知、、分别是三内角、、所对应的边长,且(Ⅰ)求角的大小;(Ⅱ)若,且△的面积为,求
已知命题:实数m满足,命题:函数是增函数。若 为真命题,为假命题,则实数m的取值范围为
数列的前项和记为,,() (Ⅰ)求的通项公式;(Ⅱ)等差数列的各项为正,其前项和为,且,又,,成等比数列,求的表达式;(3)若数列中(),求数列的前项和的表达式.
如图所示,巡逻艇在A处测得某走私船在东偏南方向距A处9海里的B处,正向南偏西方向行驶,速度为20海里/小时,如果巡逻艇以航速28海里/小时,则应在什么方向用多少时间才能追上这艘走私艇?()
一农民有基本农田2亩,根据往年经验,若种水稻,则每季每亩产量为400公斤;若种花生,则每季每亩产量为100公斤.但水稻成本较高,每季每亩240元,而花生只需80元,且花生每公斤5元,稻米每公斤卖3元.现该农民手头有400元,两种作物各种多少,才能获得最大收益?