设(为实常数).(1)当时,证明:不是奇函数;(2)设是奇函数,求与的值;(3)在满足(2)且当时,若对任意的,不等式恒成立,求的取值范围.
如图,在四棱锥中,,,底面是菱形,且,为的中点. (1)求四棱锥的体积; (2)侧棱上是否存在点,使得平面?并证明你的结论.
已知,,函数 (1)求函数的周期; (2)函数的图像可由函数的图像经过怎样的变换得到?
如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000,四周空白的宽度为10,两栏之间的中缝空白的宽度为5,怎样确定广告的高与宽的尺寸(单位:),能使矩形广告面积最小?
如图所示的长方体中,底面是边长为的正方形,为与的交点,, 是线段的中点. (1)求证:平面; (2)求三棱锥的体积.
如图,直三棱柱ABC—A1B1C1中,∠BAC=90°,AB=BB1=1,直线B1C与平面ABC成30°角,求二面角B-B1C-A的正弦值.