(本小题满分12分)如图,在四面体中,,,点,分别是,的中点. (1)求证:平面⊥平面;(2)若平面⊥平面,且,求三棱锥的体积.
(本题12分)如图,在三棱柱中,已知,侧面。(1)求直线与底面ABC所成角正切值;(2)在棱(不包含端点上确定一点的位置,使得(要求说明理由). (3)在(2)的条件下,若,求二面角的大小.
(本题12分)有一种舞台灯,外形是正六棱柱,在其每一个侧面(编号为①②③④⑤⑥)上安装5只颜色各异的灯,假若每只灯正常发光的概率为0.5,若一个侧面上至少有3只灯发光,则不需要更换这个面,否则需要更换这个面,假定更换一个面需要100元,用表示更换的面数,用表示更换费用。(1)求①号面需要更换的概率;(2)求6个面中恰好有2个面需要更换的概率;(3)写出的分布列,求的数学期望。
.
已知数列,满足,其中.(1)若,求数列的通项公式;(2)若,且.记,求证:数列为等差数列;
设为递增等差数列,Sn为其前n项和,满足-=S10,S11=33。(1)求数列的通项公式及前n项和Sn;(2)试求所有的正整数m,使为正整数。