(本题9分)已知全集,集合,集合(1)是否存在实数使,若存在,求出的值;若不存在,说明理由。(2)设有限集合,则叫做集合的和,记做.若集合,集合的所有子集分别为求(注:)
已知椭圆的离心率为,右焦点为(,0),斜率为1的直线与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(-3,2). (1)求椭圆G的方程;(2)求的面积.
求两变量间的回归方程.
求出Y对X的回归直线方程,并说明拟合效果的好坏。(其中)
已知x,y,z是互不相等的正数,且x+y+z=1,求证:.
已知函数 (1)若函数在上为增函数,求正实数的取值范围; (2)当时,求函数在上的最值; 当时,对大于1的任意正整数,试比较与的大小关系
函数函数的图像如图所示。 (Ⅰ)求的值; (Ⅱ)求函数的单调区间。