(本题9分)已知全集,集合,集合(1)是否存在实数使,若存在,求出的值;若不存在,说明理由。(2)设有限集合,则叫做集合的和,记做.若集合,集合的所有子集分别为求(注:)
(本小题满分13分)如图,在三棱柱中,四边形是边长为4的正方形,平面⊥平面,.(Ⅰ)求证:⊥平面;(Ⅱ)若点是线段的中点,请问在线段是否存在点,使得面?若存在,请说明点的位置,若不存在,请说明理由;(Ⅲ)求二面角的大小.
(本小题满分12分)四棱锥中,底面是边长为8的菱形,,若,平面⊥平面.(1)求四棱锥的体积;(2)求证:⊥.
(本小题满分12分)已知集合A={x∈R|x2+4x="0}," B={x∈R|x2+2(a+1)x+a2-1=0},如果A∩B=B,求实数a的取值范围.
(本小题满分12分)设函数的定义域为集合,函数的定义域为集合.求:(1)集合;(2)集合.
(本小题满分14分)已知二次函数(为常数,)的一个零点是.函数,设函数.(1)求的值,当时,求函数的单调增区间;(2)当时,求函数在区间上的最小值;(3)记函数图象为曲线C,设点是曲线C上不同的两点,点M为线段AB的中点,过点M作轴的垂线交曲线C于点N.判断曲线C在点N处的切线是否平行于直线AB?并说明理由.