(本题共9分)如图,在△ACB中,∠ACB = 90°,AC = 4,BC = 2,点P为线段CA(不包括端点)上的一个动点,以为圆心,1为半径作.(1)连结,若,试判断与直线AB的位置关系,并说明理由;(2)当线段PC等于多少时,与直线AB相切?(3)当与直线AB相交时,写出线段PC的取值范围。(第(3)问直接给出结果,不需要解题过程)
已知0<β<<α<π,cos(-α)=,sin(+β)=,求sin(α+β)的值.
已知cosα=,cos(α-β)=,且0<β<α<,求β.
求值:tan20°+tan40°+tan20°tan40°.
设a=,b=(4sinx,cosx-sinx),f(x)=a·b.(1)求函数f(x)的解析式;(2)已知常数ω>0,若y=f(ωx)在区间上是增函数,求ω的取值范围;(3)设集合A=,B={x||f(x)-m|<2},若AB,求实数m的取值范围.
已知a>0,函数f(x)=-2asin+2a+b,当x∈时,-5≤f(x)≤1.(1)求常数a、b的值;(2)设g(x)=f且lgg(x)>0,求g(x)的单调区间.