(本小题满分14分)设椭圆的离心率为=,点是椭圆上的一点,且点到椭圆两焦点的距离之和为4.(1)求椭圆的方程;(2)椭圆上一动点关于直线的对称点为,求的取值范围.
如图,是圆的直径,、在圆上,、的延长线交直线于点、,求证: (Ⅰ)直线是圆的切线; (Ⅱ)
设函数(为常数) (Ⅰ)=2时,求的单调区间; (Ⅱ)当时,,求的取值范围
已知椭圆的右焦点为,上顶点为B,离心率为,圆与轴交于两点 (Ⅰ)求的值; (Ⅱ)若,过点与圆相切的直线与的另一交点为,求的面积
如图,四边形是正方形,,,, (Ⅰ)求证:平面平面; (Ⅱ)求三棱锥的高
下表是某单位在2013年1—5月份用水量(单位:百吨)的一组数据:
(Ⅰ)若由线性回归方程得到的预测数据与实际检验数据的误差不超过0 05,视为“预测可靠”,通过公式得,那么由该单位前4个月的数据中所得到的线性回归方程预测5月份的用水量是否可靠?说明理由; (Ⅱ)从这5个月中任取2个月的用水量,求所取2个月的用水量之和小于7(单位:百吨)的概率 参考公式:回归直线方程是:,