小磊要制作一个三角形的钢架模型,在这个三角形中,长度为x(单位:cm)的边与这条边上的高之和为40 cm,这个三角形的面积S(单位:cm2)随x(单位:cm)的变化而变化.(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)当x是多少时,这个三角形面积S最大?最大面积是多少?
解不等式组并把解集在数轴上表示出来.
(本小题满分9分,其中(1)小题4分,(2)小题5分) 某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价)
(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件? (2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?
(本小题满分9分,其中(1)小题5分,(2)小题4分) 如图4:在△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,点E是BC上一个动点(点E与B、C不重合),连接A、E.若a、b满足,且c是不等式组的最大整数解. (1)求a、b、c的长. (2)若AE平分△ABC的周长,求∠BEA的大小.
(本小题满分8分)列方程解应用题: 现加工一批机器零件,甲单独完成需4天,乙单独完成需6天。现由乙先做1天,然后两人合做,完成后共得报酬600元。若按个人完成的工作量给付报酬,你应如何分配呢?
(本小题满分8分。其中(1)小题4分,(2)小题4分) 如图3:在正方形网格上有一个△ABC. (1)作出△ABC关于直线MN的对称图形; (2)若网格上最小正方形的边长为1,求△ABC的面积.