如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若∠DBC=30°,DE=1cm,求BD的长.
解方程:
简便计算:
如图1,在平面直角坐标系中,直线AB与轴交于点A,与轴交于点B,与直线OC:交于点C. (1)若直线AB解析式为, ①求点C的坐标; ②求△OAC的面积. (2)如图2,作的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连结AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.
如图,已知BE⊥AD,CF⊥AD,且BE=CF. (1)请你判断AD是△ABC的中线还是角平分线?并证明你的结论. (2)在(1)的条件下,若AB=6,AC=4,请确定AD的值范围.