设U={x|-1≤x≤7},A={x|0<x<3},B={x|a-2≤x≤a+1},若a∈N+,且BCUA,求a.
如图所示,是一个矩形花坛,其中AB=4米,AD=3米.现将矩形花坛扩建成一个更大的矩形花园,要求:B在上,D在上,对角线过C点,且矩形的面积小于64平方米.(Ⅰ)设长为米,矩形的面积为平方米,试用解析式将表示成的函数,并写出该函数的定义域;(Ⅱ)当的长度是多少时,矩形的面积最小?并求最小面积.
在ABC中,内角A,B,C的对边分别为a,b,c.已知,.(Ⅰ)求的值; (Ⅱ)若,求ABC的面积.
设是公比大于1的等比数列,为数列的前项和.已知,且构成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)令,求数列的前项和.
某单位有、、三个工作点,需要建立一个公共无线网络发射点,使得发射点到三个工作点的距离相等.已知这三个工作点之间的距离分别为,,.假定、、、四点在同一平面内.(Ⅰ)求的大小;(Ⅱ)求点到直线的距
已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C的标准方程;(2)若直线l:与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点。求证: 直线l过定点,并求出该定点的坐标.