(本小题满分12分)如图,在四棱锥P—ABCD中,底面是边长为的菱形,且∠BAD=120°,且PA⊥平面ABCD,PA=,M,N分别为PB,PD的中点.(Ⅰ)证明:MN∥平面ABCD;(Ⅱ) 过点A作AQ⊥PC,垂足为点Q,求二面角A—MN—Q的平面角的余弦值.
已知两直线l1:ax-by+4=0,l2:(a-1)x+y+b=0,分别求满足下列条件的a、b的值. (1) 直线l1过点(-3,-1),且l1⊥l2; (2) 直线l1与l2平行,且坐标原点到l1、l2的距离相等.
两条直线l1:(m+3)x+2y=5-3m,l2:4x+(5+m)y=16,分别求满足下列条件的m的值. (1) l1与l2相交; (2) l1与l2平行; (3) l1与l2重合; (4) l1与l2垂直.
如图所示,在底面为直角梯形的四棱锥PABCD中,AD∥BC,PD⊥平面ABCD,AD=1,AB=,BC=4. (1)求证:BD⊥PC; (2)求直线AB与平面PDC所成的角; (3)设点E在棱PC上,=λ,若DE∥平面PAB,求λ的值.
如图所示,四棱锥PABCD的底面为正方形,侧棱PA⊥底面ABCD,且PA=AD=2,E,F,H分别是线段PA,PD,AB的中点. (1)求证:PB∥平面EFH; (2)求证:PD⊥平面AHF.
如图所示,已知三棱柱ABCA1B1C1, (1)若M、N分别是AB,A1C的中点,求证:MN∥平面BCC1B1; (2)若三棱柱ABCA1B1C1的各棱长均为2,∠B1BA=∠B1BC=60°,P为线段B1B上的动点,当PA+PC最小时,求证:B1B⊥平面APC.