已知命题p:,命题q:,若 与都为假命题,求x的值。
(本小题满分12分)如图:、是以为直径的圆上两点,,, 是上一点,且,将圆沿直径折起,使点在平面的射影在上.(1)求证:平面;(2)求证:平面;(3)求三棱锥的体积.
某高校在2010年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示。(1)求第3、4、5组的频率;(2)为了能选拔出最优秀的学生,该校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少学生进入第二轮面试?(3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有一名学生被甲考官面试的概率。
(本小题满分12分)△ABC中,角A、B、C对边分别是a、b、c,满足.(Ⅰ)求角A的大小;(Ⅱ)求的最大值,并求取得最大值时角B、C的大小.
(本小题满分14分)已知函数(1)若函数在上为增函数,求正实数的取值范围;(2)讨论函数的单调性;(3)当时,求证:对大于的任意正整数,都有。
(本小题满分13分)在平面直角坐标系中,已知,若实数使得(为坐标原点)(1)求点的轨迹方程,并讨论点的轨迹类型;(2)当时,若过点的直线与(1)中点的轨迹交于不同的两点(在之间),试求与面积之比的取值范围。