作图题(不写作法,保留痕迹,写结论)(1)作∠AOB角平分线(2)作线段AB垂直平分线
如图,四边形ABCD是边长为4的正方形,且DE=AB,△ABF是△ADE的旋转图形。 (1)旋转中心是哪一点? (2)旋转了多少度? (3)AF的长度是多少? (4)如果连结EF,那么△AEF是怎样的三角形?
张红和王伟为了争取到一张观看CBA联赛的入场券,他们自设计了一个方案:转动如图所示的转盘,如果指针停在阴影区域,则张红得到入场券;如果指针停在白色区域,则王伟得到入场券(转盘被等分成6个扇形。若指针停在边界处,则重新转动转盘)。计算张红获得入场券的概率,并说明张红的方案是否公平。
(1)计算 (2)解方程
(1)阅读合作学习内容,解答其中的问题;
(2)小亮进一步研究四边形AEGF的特征后提出问题:“当AE>EG时,矩形AEGF与矩形DOHE能否全等?能否相似?”针对小亮提出的问题,请你判断这两个矩形能否全等?直接写出结论即可;这两个矩形能否相似?若能相似,求出相似比;若不能相似,试说明理由。
甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元. (1)求甲乙两件服装的进价各是多少元; (2)由于乙服装畅销,制衣厂经过两次上调价格后,乙服装每件的进价达到242元,求每件乙服装进价的平均增长率; (3)若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,此时定价至少为多少元时,乙服装才可获得利润(定价取整数)?