已知:;按此规律,则:(1) ;(2)若,请你能根据上述规律求出代数式的值(本小题5分 )
.(14分)已知:是方程的两个实数根,且,抛物线的图像经过点A()、B().(1)求这个抛物线的解析式;(3分)(2)设(1)中抛物线与轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和△BCD的面积;(5分) (3)P是线段OC上的一点,过点P作PH⊥轴,与抛物线交于H点,若直线BC把△PCH分成面积之比为2:3的两部分,请求出P点的坐标.(6分)
.(12分)如图1:⊙O的直径为AB,过半径OA的中点G作弦CE⊥AB,在上取一点D,分别作直线CD、ED交直线AB于点F、M。(1)求∠COA和∠FDM的度数;(3分)(2)求证:△FDM∽△COM;(4分)(3)如图2:若将垂足G改取为半径OB上任意一点,点D改取在上,仍作直线CD、ED,分别交直线AB于点F、M,试判断:此时是否仍有△FDM∽△COM?证明你的结论。(5分)
(10分) 如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边上的中点,连结DE. (1)DE与半圆O相切吗?若相切,请给出证明;若不相切,请说明理由;( 5分)(2)若AD、AB的长是方程x2-10x+24=0的两个根,求直角边BC的长。(5分)
(8分) 如图,用树状图或列表法求出下面两个转盘配成紫色的概率.(红色+蓝色=紫色)
(8分) 现有9个相同的小正三角形拼成的大正三角形,将其部分涂黑.如图(1),(2)所示.图(1) 图(2) 图(3) 图(4)观察图(1),图(2)中涂黑部分构成的图案.它们具有如下特征:①都是轴对称图形②涂黑部分都是三个小正三角形.请在图(3),图(4)内分别设计一个新图案,使图案具有上述两个特征