.(14分)已知:是方程的两个实数根,且,抛物线的图像经过点A()、B().(1)求这个抛物线的解析式;(3分)(2)设(1)中抛物线与轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和△BCD的面积;(5分) (3)P是线段OC上的一点,过点P作PH⊥轴,与抛物线交于H点,若直线BC把△PCH分成面积之比为2:3的两部分,请求出P点的坐标.(6分)
(·黑龙江牡丹江)已知四边形ABCD是正方形,等腰直角△AEF的直角顶点E在直线BC上(不与点B,C重合),FM⊥AD,交射线AD于点M. (1)当点E在边BC上,点M在边AD的延长线上时,如图①,求证:AB+BE=AM; (提示:延长MF,交边BC的延长线于点H.) (2)当点E在边CB的延长线上,点M在边AD上时,如图②;当点E在边BC的延长线上,点M在边AD上时,如图③.请分别写出线段AB,BE,AM之间的数量关系,不需要证明; (3)在(1),(2)的条件下,若BE=,∠AFM=15°,则AM= .
(·黑龙江大庆)如图,△ABC中,∠ACB=90°,D.E分别是BC、BA的中点,联结DE,F在DE延长线上,且AF=AE. (1)求证:四边形ACEF是平行四边形; (2)若四边形ACEF是菱形,求∠B的度数.
(·辽宁辽阳)菱形ABCD中,两条对角线AC,BD相交于点O,∠MON+∠BCD=180°,∠MON绕点O旋转,射线OM交边BC于点E,射线ON交边DC于点F,连接EF. (1)如图1,当∠ABC=90°时,△OEF的形状是 ; (2)如图2,当∠ABC=60°时,请判断△OEF的形状,并说明理由; (3)在(1)的条件下,将∠MON的顶点移到AO的中点O′处,∠MO′N绕点O′旋转,仍满足∠MO′N+∠BCD=180°,射线O′M交直线BC于点E,射线O′N交直线CD于点F,当BC=4,且时,直接写出线段CE的长.
(·辽宁阜新)如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时针旋转90°,得到线段CQ,连接BP,DQ. (1)如图a,求证:△BCP≌△DCQ; (2)如图,延长BP交直线DQ于点E. ①如图b,求证:BE⊥DQ; ②如图c,若△BCP为等边三角形,判断△DEP的形状,并说明理由.
(·辽宁朝阳)问题:如图(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,试探究AD、DE、EB满足的等量关系. [探究发现] 小聪同学利用图形变换,将△CAD绕点C逆时针旋转90°得到△CBH,连接EH,由已知条件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.根据“边角边”,可证△CEH≌ ,得EH=ED. 在Rt△HBE中,由 定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之间的等量关系是 . [实践运用] (1)如图(2),在正方形ABCD中,△AEF的顶点E、F分别在BC、CD边上,高AG与正方形的边长相等,求∠EAF的度数; (2)在(1)条件下,连接BD,分别交AE、AF于点M、N,若BE=2,DF=3,BM=2,运用小聪同学探究的结论,求正方形的边长及MN的长.