、设直线和圆相交于点。(1)求弦的垂直平分线方程;(2)求弦的长。
提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车速度为0;当车流密度不超过20辆/千米时,车流速度为60千米,/小时,研究表明:当时,车流速度v是车流密度的一次函数.(Ⅰ)当时,求函数的表达式;(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时) 可以达到最大,并求出最大值.(精确到1辆/小时)
已知函数是奇函数,并且函数的图像经过点(1,3).(1)求实数的值;(2)求函数的值域。
已知函数f(x)=x2-3x-10的两个零点为x1,x2(x1<x2),设A={x|x≤x1,或x≥x2},B={x|2m-1<x<3m+2},且A∩B=Ø,求实数m的取值范围.
(1)计算:;(2)解方程:log3(6x-9)=3.
某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天8h计算,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?