计算:
已知是关于的一元二次方程的两个实数根,且——=115(1)求k的值;(2)求++8的值。
如图,已知:在四边形ABFC中,=90的垂直平分线EF交BC于点D,交AB于点E,且CF=AE(1)试探究,四边形BECF是什么特殊的四边形;(2)当的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.(特别提醒:表示角最好用数字)
解不等式组并把解集在已画好的数轴上表示出来。
如图,抛物线与轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当=O和=4时,y的值相等。直线y=4x-16与这条抛物线相交于两点,其中一点的横坐标是3,另一点是这条抛物线的顶点M。(1)求这条抛物线的解析式;(2)P为线段OM上一点,过点P作PQ⊥轴于点Q。若点P在线段OM上运动(点P不与点O重合,但可以与点M重合),设OQ的长为t,四边形PQCO的面积为S,求S与t之间的函数关系式及自变量t的取值范围;(3)随着点P的运动,四边形PQCO的面积S有最大值吗?如果S有最大值,请求出S的最大值并指出点Q的具体位置和四边形PQCO的特殊形状;如果S没有最大值,请简要说明理由;(4)随着点P的运动,是否存在t的某个值,能满足PO=OC?如果存在,请求出t的值。
如图,△ABC内接于⊙O,过点B作⊙O的切线,交于CA的延长线于点E,∠EBC=2∠C.(1)求证:AB=AC;(2)当=时,①求tan∠ABE的值;②如果AE=,求AC的值。