(本小题满分12分)已知直线的参数方程为(为参数),若以直角坐标系的点为极点,方向为极轴,选择相同的长度单位建立极坐标系,得曲线的极坐标方程为(1)将直线的参数方程化为普通方程,把曲线的极坐标方程化为直角坐标方程;(2)若直线与曲线交于两点,求.
已知函数 (I)若函数在上是减函数,求实数的取值范围; (II)令,是否存在实数,当(是自然常数)时,函数的最小值 是3,若存在,求出的值;若不存在,说明理由; (Ⅲ)当时,证明:.
(本小题满分14分) 设椭圆的离心率为=,点是椭圆上的一点,且点到椭圆两焦点的距离之和为4. (1)求椭圆的方程; (2)椭圆上一动点关于直线的对称点为,求的取值范围.
如图1,在直角梯形中,,,,为线段的中点.将沿折起,使平面平面,得到几何体,如图2所示. (Ⅰ)求证:平面; (Ⅱ)求二面角的余弦值.
为了解高中一年级学生身高情况,某校按10%的比例对全校700名高中一年级学生按性别 进行抽样检查,测得身高频数分布表如下表1、表2. 表1:男生身高频数分布表 表2:女生身高频数分布表 (1)求该校男生的人数并完成下面频率分布直方图; (2)估计该校学生身高(单位:cm)在的概率; (3)在男生样本中,从身高(单位:cm)在的男生中任选3人,设表示所选3人中身高(单位:cm)在的人数,求的分布列和数学期望.
(本小题满分10分)选修4-5:不等式选讲 设函数,其中. (Ⅰ)当时,求不等式的解集; (Ⅱ)若不等式的解集为,求a的值.