已知椭圆:的右焦点,点在椭圆上.(1)求椭圆的标准方程;(2)直线过点,且与椭圆交于,两点,过原点作直线的垂线,垂足为,如果△的面积为(为实数),求的值.
如图,边长为2的等边所在的平面垂直于矩形所在的平面,,为的中点. (1)证明:; (2)求异面直线和所成角的余弦值.
设实数满足. (1)求;(2)求展开式中含项的系数
已知椭圆中心在原点,焦点在坐标轴上,直线与椭圆在第一象限内的交点是,点在轴上的射影恰好是椭圆的右焦点,椭圆另一个焦点是,且 (1)求椭圆的方程; (2)直线过点,且与椭圆交于两点,求的内切圆面积的最大值
已知函数 (Ⅰ)求函数的单调区间; (Ⅱ)若不等式在区间上恒成立,求实数k的取值范围; (Ⅲ)求证:
已知椭圆C的中心在原点,对称轴为坐标轴,且过 (Ⅰ)求椭圆C的方程, (Ⅱ)直线交椭圆C与A、B两点,求证: