已知椭圆:的右焦点,点在椭圆上.(1)求椭圆的标准方程;(2)直线过点,且与椭圆交于,两点,过原点作直线的垂线,垂足为,如果△的面积为(为实数),求的值.
(本小题满分14分)已知函数.(1)讨论函数在定义域内的极值点的个数;(2)若函数在处取得极值,对,恒成立,求实数的取值范围;(3)当时,求证:.
(本小题满分13分)已知函数.(1) 若函数的定义域和值域均为,求实数的值;(2) 若在区间上是减函数,且对任意的,总有,求实数的取值范围;(3) 若在上有零点,求实数的取值范围.
(本小题满分12分)已知某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为元/千克,每次购买配料需支付运费236元.每次购买来的配料还需支付保管费用(若天购买一次,需要支付天的保管费)。其标准如下: 7天以内(含7天),无论重量多少,均按10元/天支付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/千克支付.(1)当9天购买一次配料时,求该厂用于配料的保管费用是多少元?[(2)设该厂天购买一次配料,求该厂在这天中用于配料的总费用(元)关于的函数关系式,并求该厂多少天购买一次配料才能使平均每天支付的费用最少?
(本小题满分12分)已知函数(1)求函数的单调递减区间;(2)设,的最小值是,最大值是,求实数的值.
(本小题满分12分)已知实数,命题:在区间上为减函数;命题:方程在有解。若为真,为假,求实数的取值范围。