(本小题满分13分)已知函数,,其中,为自然对数的底数.(Ⅰ)求在上的最小值;(Ⅱ)试探究能否存在区间,使得和在区间上具有相同的单调性?若能存在,说明区间的特点,并指出和在区间上的单调性;若不能存在,请说明理由.
求下列函数的导数:;
定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界.已知函数. (1)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;(2)若函数在上是以3为上界的有界函数,求实数的取值范围.
在直三棱柱中,, ,是的中点,是上一点,且.(1)求证: 平面;(2)求三棱锥的体积;(3)试在上找一点,使得平面.
已知函数,常数.(1)讨论函数的奇偶性,并说明理由;(2)若函数在上为增函数,求的取值范围
在平面直角坐标系,已知圆心在第二象限、半径为的圆C与直线y=x相切于坐标原点O.椭圆与圆C的一个交点到椭圆两焦点的距离之和为.(1)求圆C的方程;(2)圆C上是否存在异于原点的点Q,使(F为椭圆右焦点),若存在,请求出点Q的坐标;若不存在,请说明理由.