(本小题满分13分)已知函数,,其中,为自然对数的底数.(Ⅰ)求在上的最小值;(Ⅱ)试探究能否存在区间,使得和在区间上具有相同的单调性?若能存在,说明区间的特点,并指出和在区间上的单调性;若不能存在,请说明理由.
(本小题满分12分) 已知椭圆的离心率为,直线经过椭圆的上顶点和右顶点,并且和圆相切. (1)求椭圆的方程; (2)设直线与椭圆相交于,两点,以线段, 为邻边作平行四边行,其中顶点在椭圆上,为坐标原点,求的取值范围.
(本小题满分12分) 已知数列的前n项和为,且(), (1)求证:数列是等比数列; (2)设数列的前n项和为,,试比较与的大小.
(本小题满分12分) 在直三棱柱中,是中点. (1)求证://平面; (2)求点到平面的距离; (3)求二面角的余弦值.
(本小题满分12分) 在一次人才招聘会上,有三种不同的技工面向社会招聘,已知某技术人员应聘三种技工被录用的概率分别是0.8、0.5、0.2(允许技工人员同时被多种技工录用). (1)求该技术人员被录用的概率; (2)设表示该技术人员被录用的工种数与未被录用的工种数的乘积,求的分布列和数学期望.
(本小题满分10分) 在△ABC中,角A、B、C对边分别是,且满足. (1)求角A的大小; (2)求的最大值,并求取得最大值时角B、C的大小.