如图,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=,AA′=1,点M,N分别为A′B和B′C′的中点.(1)证明:MN∥平面A′ACC′;(2)求三棱锥A′-MNC的体积.(锥体体积公式V=Sh,其中S为底面面积,h为高)
已知函数,曲线上点处的切线方程为. (1)若在时有极值,求的表达式; (2)在(1)的条件下求在上的最值及相应的的值.
已知函数. (1)求函数的最小正周期; (2)当时,求函数的最大值和最小值.
对于任意的实数 恒成立,记实数M的最大值是m. (Ⅰ)求m的值; (Ⅱ)解不等式.
在直角坐标系中,曲线的参数方程为( 为参数),若以该直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为:(其中为常数). (Ⅰ)若曲线与曲线只有一个公共点,求的取值范围; (Ⅱ)当时,求曲线上的点与曲线上点的最小距离.
已知C点在圆O直径BE的延长线上,CA切圆O于A点, DC是∠ACB的平分线交AE于点F,交AB于D点. (Ⅰ)求的度数. (Ⅱ)若AB=AC,求AC:BC.