自从温州动车开通后,某批发商场的生意一直很火爆。经过统计,商场销售一批衬衫,每天可售出 2000 件,每件盈利 40 元,为了扩大销售,减少库存,决定采取适当的降价措施,经调查发现,如果一件衬衫每降价 1 元,每天可多售出 200 件. (1)设每件降价 x 元,每天盈利 y 元,列出 y 与 x 之间的函数关系式;(2)每件降价多少元时,商场每天的盈利达到最大?盈利最大是多少元?
如图, ⊙ O 的弦 AB 、 CD 的延长线相交于点 P ,且 AB = CD .求证: PA = PC .
如图是某市连续5天的天气情况.
(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;
(2)根据如图提供的信息,请再写出两个不同类型的结论.
如图, D 是 ΔABC 的边 AB 的中点, DE / / BC , CE / / AB , AC 与 DE 相交于点 F .求证: ΔADF ≅ ΔCEF .
如图,已知二次函数的图象与 x 轴交于 A 、 B 两点, D 为顶点,其中点 B 的坐标为 ( 5 , 0 ) ,点 D 的坐标为 ( 1 , 3 ) .
(1)求该二次函数的表达式;
(2)点 E 是线段 BD 上的一点,过点 E 作 x 轴的垂线,垂足为 F ,且 ED = EF ,求点 E 的坐标.
(3)试问在该二次函数图象上是否存在点 G ,使得 ΔADG 的面积是 ΔBDG 的面积的 3 5 ?若存在,求出点 G 的坐标;若不存在,请说明理由.
如图, AB 是 ⊙ O 的直径, AC 与 ⊙ O 交于点 F ,弦 AD 平分 ∠ BAC , DE ⊥ AC ,垂足为 E .
(1)试判断直线 DE 与 ⊙ O 的位置关系,并说明理由;
(2)若 ⊙ O 的半径为2, ∠ BAC = 60 ° ,求线段 EF 的长.