已知,,求,的值.
选修4-2:矩阵与变换 已知矩阵A=,直线l:x-y+4=0在矩阵A对应的变换作用下变为 直线l¢:x-y+2a=0. (1)求实数a的值; (2)求A2.
选修4—1:几何证明选讲 如图,AB,AC是⊙O的切线,ADE是⊙O的割线,求证:BE· CD=BD· CE.
(本小题满分16分)已知数列{an}的各项均为正数,其前n项的和为Sn,且对任意的m,n∈N*,都有(Sm+n+S1)2=4a2ma2n.(1)求的值;(2)求证:{an}为等比数列;(3)已知数列{cn},{dn}满足|cn|=|dn|=an,p(p≥3)是给定的正整数,数列{cn},{dn}的前p项的和分别为Tp,Rp,且Tp=Rp,求证:对任意正整数k(1≤k≤p),ck=dk.
(本小题满分16分)已知函数f(x)=x2-x+t,t≥0,g(x)=lnx.(1)令h(x)=f(x)+g(x),求证:h(x)是增函数;(2)直线l与函数f(x),g(x)的图象都相切.对于确定的正实数t,讨论直线l的条数,并说明理由.
(本小题满分16分)在平面直角坐标系xOy中,设中心在坐标原点的椭圆C的左、右焦点分别为F1、F2,右准线l:x=m+1与x轴的交点为B,BF2=m. (1)已知点(,1)在椭圆C上,求实数m的值;(2)已知定点A(-2,0).①若椭圆C上存在点T,使得=,求椭圆C的离心率的取值范围;②当m=1时,记M为椭圆C上的动点,直线AM,BM分别与椭圆C交于另一点P,Q,若=λ,=m,求证:λ+m为定值.