设椭圆C:的两个焦点为F1、F2,点B1为其短轴的一个端点,满足,.(1)求椭圆C的方程;(2)过点M 做两条互相垂直的直线l1、l2设l1与椭圆交于点A、B,l2与椭圆交于点C、D,求 的最小值.
已知数列{an}和{bn}满足:,其中λ为实数,n为正整数.(Ⅰ)若数列{an}前三项成等差数列,求的值;(Ⅱ)试判断数列{bn}是否为等比数列,并证明你的结论;(Ⅲ)设0<a<b,Sn为数列{bn}的前n项和.是否存在实数λ,使得对任意正整数n,都有a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.
已知是函数的两个零点,函数的最小值为,记(ⅰ)试探求之间的等量关系(不含);(ⅱ)当且仅当在什么范围内,函数存在最小值?(ⅲ)若,试确定的取值范围。
已知x=是的一个极值点(Ⅰ)求的值;(Ⅱ)求函数的单调增区间;(Ⅲ)设,试问过点(2,5)可作多少条曲线y=g(x)的切线?为什么?
已知函数是奇函数,是偶函数。(1)求的值;(2)设若对任意恒成立,求实数的取值范围。
某观测站C在城A的南偏西25°的方向上,由A城出发有一条公路,走向是南偏东50°,在C处测得距C为km的公路上B处,有一人正沿公路向A城走去,走了12 km后,到达D处,此时C、D间距离为12 km,问这人还需走多少千米到达A城?