(本小题满分12分)如图,定点的坐标分别为,一质点从原点出发,始终沿轴的正方向运动,已知第1分钟内,质点运动了1个单位,之后每分钟内比上一分钟内多运动了2个单位,记第分钟内质点运动了个单位,此时质点的位置为.(Ⅰ)求、的表达式;(Ⅱ)当为何值时,取得最大,最大值为多少?
已知函数 (1)若函数在上为增函数,求正实数的取值范围; (2)当时,求在上的最大值和最小值;
已知直线过椭圆E:的右焦点,且与E相交于两点. (1)设(为原点),求点的轨迹方程; (2)若直线的倾斜角为,求的值.
设数列 (1)求 (2)求的表达式。
20090507
如图所示,在直三棱柱中,,,,,是棱的中点. (1)证明:平面; (2)求二面角的余弦值.
某班从6名班干部(其中男生4人,女生2人)中选3人参加学校学生会的干部竞选. (1)设所选3人中女生人数为,求的分布列 (2)在男生甲被选中的情况下,求女生乙也被选中的概率.