已知某类型的高射炮在它们控制的区域内击中具有某种速度敌机的概率为.(Ⅰ)假定有5门这种高射炮控制某个区域,求敌机进入这个区域后被击中的概率;(Ⅱ)要使敌机一旦进入这个区域内有90%以上的概率被击中,至少需要布置几门这类高射炮?(参考数据,)
.(本小题满分13分) 某创业投资公司拟投资开发某种新能源产品,估计能获得10万元~1000万元的投资收益.现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%. (1)若建立函数f(x)模型制定奖励方案,试用数学语言表述公司对奖励函数f(x)模型 的基本要求; (2)现有两个奖励函数模型:(1)y=;(2)y=4lgx-3.试分析这两个函数模型 是否符合公司要求?
(本小题满分12分) 已知数列的前n项和满足(a>0,且)。数列满足 (1)求数列的通项。 (2)若对一切都有,求a的取值范围。
(本小题满分12分) 在长方体中,点是上的动点,点为的中点. (1)当点在何处时,直线//平面,并证明你的结论; (2)在(Ⅰ)成立的条件下,求二面角的大小.
设A是单位圆和x轴正半轴的交点,P,Q是单位圆上两点,是坐标原点,且,. (Ⅰ)若点Q的坐标是,求的值; (Ⅱ)设函数,求的值域.
(本小题满分15分) 已知函数,。 (Ⅰ)求在区间的最小值; (Ⅱ)求证:若,则不等式≥对于任意的恒成立; (Ⅲ)求证:若,则不等式≥对于任意的恒成立。