已知二阶矩阵M属于特征值3的一个特征向量为,并且矩阵对应的变换将点变成点,求出矩阵。
过点作一直线l,使它与两坐标轴相交且与两轴所围成的三角形面积为5.
已知直线,(1)系数为什么值时,方程表示通过原点的直线;(2)系数满足什么关系时与坐标轴都相交;(3)系数满足什么条件时只与x轴相交;(4)系数满足什么条件时是x轴;(5)设为直线上一点,证明:这条直线的方程可以写成.
已知一条曲线在x轴的上方,它上面的每一点到点A(0,2)的距离减去它到x轴的距离的差都是2,求这条曲线的方程.
用坐标法证明三角形的中位线长为其对应边长的一半.
判断下列A(-1,-1),B(0,1),C(1,3)三点是否共线,并给出证明.