已知函数(Ⅰ)求函数在(1, )的切线方程(Ⅱ)求函数的极值(Ⅲ)对于曲线上的不同两点,如果存在曲线上的点,且,使得曲线在点处的切线,则称为弦的陪伴切线.已知两点,试求弦的陪伴切线的方程;
已知向量,,函数. (1) 求的最小正周期及单调增区间 (2)如果,求的取值范围.
某校从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六组[40,50),[50,60) ...[90,100]后画出如下部分频率分布直方图.观察图形的信息,回答下列问题: (1)求成绩落在[70,80)上的频率,并补全这个频率分布直方图; (2)估计这次考试的及格率(60分及以上为及格)和平均分;
如图,在正方体中,是棱的中点. (Ⅰ)证明:平面; (Ⅱ)证明:.
从编号为1,2,3,4,5的五个形状大小相同的球中,任取2个球,求:(1)取到的这2个球编号之和为5的概率;(2)取到的这2个球编号之和为奇数的概率.
已知为等差数列,且 (1)求数列的第二项; (2)若成等比数列,求数列的通项.