已知命题p:,命题q:. 若“p且q”为真命题,求实数m的取值范围.
本题共有2个小题,第1小题满分8分,第2小题满分8分.已知函数(其中且,为实数常数).(1)若,求的值(用表示);(2)若且对于恒成立,求实数m的取值范围(用表示).
由于卫生的要求游泳池要经常换水(进一些干净的水同时放掉一些脏水), 游泳池的水深经常变化,已知泰州某浴场的水深(米)是时间,(单位小时)的函数,记作,下表是某日各时的水深数据
经长期观测的曲线可近似地看成函数 (Ⅰ)根据以上数据,求出函数的最小正周期T,振幅A及函数表达式;(Ⅱ)依据规定,当水深大于2米时才对游泳爱好者开放,请依据(1)的结论,判断一天内的上午8 00至晚上20 00之间,有多少时间可供游泳爱好者进行运动
(本小题满分16分)已知二次函数g(x)对任意实数x都满足,且.令.(1)求 g(x)的表达式; (2)若使成立,求实数m的取值范围;(3)设,,证明:对,恒有
(本小题满分16分)已知椭圆的离心率为,过右顶点A的直线l与椭圆C相交于A、B两点,且. (1)求椭圆C和直线l的方程;(2)记曲线C在直线l下方的部分与线段AB所围成的平面区域(含边界)为D.若曲线与D有公共点,试求实数m的最小值.
(本小题满分15分)某地有三个村庄,分别位于等腰直角三角形ABC的三个顶点处,已知AB=AC=6km,现计划在BC边的高AO上一点P处建造一个变电站. 记P到三个村庄的距离之和为y. (1)设,把y表示成的函数关系式;(2)变电站建于何处时,它到三个小区的距离之和最小?