(本小题满分13分)已知向量m=n=.(1)若m·n=1,求的值;(2)记函数f(x)= m·n,在中,角A,B,C的对边分别是a,b,c,且满足求f(A)的取值范围.
已知函数,点为一定点,直线分别与函数的图象和轴交于点,,记的面积为.(1)当时,求函数的单调区间;(2)当时, 若,使得, 求实数的取值范围.
某中学校本课程共开设了共门选修课,每个学生必须且只能选修门选修课,现有该校的甲、乙、丙名学生.(Ⅰ)求这名学生选修课所有选法的总数;(Ⅱ)求恰有门选修课没有被这名学生选择的概率;(Ⅲ)求选修课被这名学生选择的人数的分布列和数学期望.
如图,四棱锥中,底面ABCD为菱形,,Q是AD的中点.(Ⅰ)若,求证:平面PQB平面PAD;(Ⅱ)若平面APD平面ABCD,且,点M在线段PC上,试确定点M的位置,使二面角的大小为,并求出的值.
已知,其中,.(1)求的周期和单调递减区间;(2)在△ABC中,角A,B,C的对边分别为,,,求边长和的值().
(本小题满分12分)已知函数满足,对任意都有,且.(1)求函数的解析式;(2)是否存在实数,使函数在上为减函数?若存在,求出实数的取值范围;若不存在,说明理由.