(本小题满分12分)、已知函数(,)为偶函数,且函数图象的两相邻对称轴间的距离为.(Ⅰ)求的值;(Ⅱ)将函数的图象向右平移个单位后,得到函数的图象,求的单调递减区间.
已知函数定义域为,若对于任意的,,都有,且>0时,有>0.⑴证明: 为奇函数;⑵证明: 在上为单调递增函数;⑶设=1,若<,对所有恒成立,求实数的取值范围.
汽车和自行车分别从地和地同时开出,如下图,各沿箭头方向(两方向垂直)匀速前进,汽车和自行车的速度分别是10米/秒和5米/秒,已知米.(汽车开到地即停止)(Ⅰ)经过秒后,汽车到达处,自行车到达处,设间距离为,试写出关于的函数关系式,并求其定义域.(Ⅱ)经过多少时间后,汽车和自行车之间的距离最短?最短距离是多少?
已知函数 (Ⅰ)求的值;(Ⅱ)求()的值;(Ⅲ)当时,求函数的值域。
已知奇函数(1)求实数m的值,并在给出的直角坐标系中画出的图象;(2)若函数在区间[-1,-2]上单调递增,试确定的取值范围.
如图,在ABC中,C=90°,AC="b," BC="a," P为三角形内的一点,且,(Ⅰ)建立适当的坐标系求出P的坐标; (Ⅱ)求证:│PA│2+│PB│2=5│PC│2 (Ⅲ)若a+2b=2,求以PA,PB,PC分别为直径的三个圆的面积之和的最小值,并求出此时的b值.