在国家政策的宏观调整下,某市的商品房成交均价由今年3月份的14000元/m2下降到5月份的11340元/m2.(1)那么4、5两月平均每月降价的百分率约是多少?(2)如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破10000元/m2?请说明理由.
已知:抛物线经过A(,0)、B(5,0)两点,顶点为P. 求:(1)求b,c的值; (2)求△ABP的面积; (3)若点C(,)和点D(,)在该抛物线上,则当时, 请写出与的大小关系.
如图,已知抛物线与x轴交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3)。 (1)求抛物线的解析式; (2)设抛物线顶点为D,求四边形AEDB的面积; (3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由。
如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点P。 (1)求证:AP是⊙O的切线; (2)若OC=CP,AB=,求CD的长。
某宾馆有30个房间供游客住宿,当每个房间的房价为每天160元时,房间会全部住满。当每个房间每天的房价每增加10元时,就会有一个房间空闲。宾馆需对游客居住的每个房间每天支出20元的各种费用。根据规定,每个房间每天的房价不得高于260元。 设每个房间的房价每天增加x元(x为10的整数倍)。 (1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围; (2)设宾馆一天的利润为w元,求w与x的函数关系式; (3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?
如图,AB是⊙O的直径,C是的中点,CE⊥AB于E,BD交CE于点F, (1)求证:CF=BF; (2)若CD=12,AC=16,求⊙O的半径和CE的长。