设函数,其中。(Ⅰ)若,求a的值;(Ⅱ)当时,讨论函数在其定义域上的单调性;(Ⅲ)证明:对任意的正整数,不等式都成立。
已知函数,.(1)如果函数在上是单调减函数,求的取值范围;(2)是否存在实数,使得方程在区间内有且只有两个不相等的实数根?若存在,请求出的取值范围;若不存在,请说明理由.
已知函数在与时,都取得极值.(1)求的值;(2)若,求的单调区间和极值;(3)若对都有恒成立,求的取值范围.
在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,,、分别为、的中点.(1)求二面角的余弦值;(2)求点到平面的距离.
如图,在四棱锥中,平面ABCD,底面ABCD是菱形,,.(1)求证:平面PAC;(2)若,求与所成角的余弦值;(3)当平面PBC与平面PDC垂直时,求PA的长.
计算下列定积分.(1) (2)