(本小题15分)已知椭圆的右焦点恰好是抛物线的焦点,点是椭圆的右顶点.过点的直线交抛物线于两点,满足,其中是坐标原点.(1)求椭圆的方程;(2)过椭圆的左顶点作轴平行线,过点作轴平行线,直线与相交于点.若是以为一条腰的等腰三角形,求直线的方程.
(本小题满分12分,(Ⅰ)问5分,(Ⅱ)问7分) 设个不全相等的正数依次围成一个圆圈。 (Ⅰ)若,且是公差为的等差数列,而是公比为的等比数列;数列的前项和满足:,求通项; (Ⅱ)若每个数是其左右相邻两数平方的等比中项,求证:。
(本小题满分12分,(Ⅰ)问5分,(Ⅱ)问7分) 已知以原点为中心的椭圆的一条准线方程为,离心率,是椭圆上的动点。 (Ⅰ)若的坐标分别是,求的最大值; (Ⅱ)如题(20)图,点的坐标为,是圆上的点,是点在轴上的射影,点满足条件:,,求线段的中点的轨迹方程。
(本小题满分12分,(Ⅰ)问5分,(Ⅱ)问7分) 如题(19)图,在四棱锥中,且;平面平面,;为的中点,。求: (Ⅰ)点到平面的距离; (Ⅱ)二面角的大小。
在直角坐标系中,△OAB的顶点坐标O(0 , 0),A(2, 0),B(1, ),求△OAB在矩阵MN的作用下变换所得到的图形的面积,其中矩阵,
如图,四边形ABCD内接于,,过A点的切线交CB的延长线于E点. 求证:.