(本小题满分12分,(Ⅰ)问5分,(Ⅱ)问7分)已知以原点为中心的椭圆的一条准线方程为,离心率,是椭圆上的动点。(Ⅰ)若的坐标分别是,求的最大值;(Ⅱ)如题(20)图,点的坐标为,是圆上的点,是点在轴上的射影,点满足条件:,,求线段的中点的轨迹方程。
(本小题12分)已知满足不等式组, 求(1)的最大值; (2)的最小值.
(本小题10分)已知圆心的坐标为(1,1),圆与轴和轴都相切. (1)求圆的方程; (2)求与圆相切,且在轴和轴上的截距相等的直线方程.
已知圆,圆,动圆与圆外切并且与圆内切,圆心的轨迹为曲线. (1)求曲线的轨迹方程; (2)是与圆以及圆都相切的一条直线,与曲线交于两点,当圆的半径最长时, 求的长.
(本小题12分)已知椭圆的右焦点为,点在椭圆上. (Ⅰ)求椭圆的离心率; (Ⅱ)点在圆上,且在第一象限,过作圆的切线交椭圆于,两点,求证:△的周长是定值.
(本小题12分)已知圆直线 (Ⅰ)求证:直线与圆C相交; (Ⅱ)计算直线被圆截得的最短的弦长.