甲、乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为,,,且各人回答正确与否相互之间没有影响.用表示甲队的总得分. (1)求的概率及的数学期望; (2)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求.
甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为 1 2 与 p ,且乙投球2次均未命中的概率为 1 16 . (Ⅰ)求乙投球的命中率 p ; (Ⅱ)求甲投球2次,至少命中1次的概率; (Ⅲ)若甲、乙两人各投球2次,求两人共命中2次的概率.
(南京市2002年二模)某公司生产的A型商品通过租赁柜台进入某商场销售.第一年,商 场为吸引厂家,决定免收该年管理费,因此,该年A型商品定价为每件70元,销售量为 11.8万件.第二年,商场开始对该商品征收比率为p%的管理费(即每销售100元要征收p元),于是该商品的定价上升为每件元,预计年销售量将减少p万件.(1)将第二年商场对商品征收的管理费y(万元)表示成p的函数,并指出这个函数的定义域;(2)要使第二年商场在此项经营中收取的管理费不少于14万元,则商场对该商品征收管理费的比率p%的范围是多少?(3)第二年,商场在所收费不少于14万元的前提下,要让厂家获得最大销售金额,则p 应为多少?
已知直线是半径为3的圆的一条切线,是平面上的一动点,作,垂足为,且;(1)、试问点的轨迹是什么样的曲线?求出该曲线的方程;(2)、过圆心作直线交点的轨迹于、两点,若,求直线的方程。
已知函数,点、是该函数图象上的两点,且满足,;(1)、求证:;(2)、问是否能够保证和中至少有一个为正数?请证明你的结论。
已知函数的值域为;(1)、求实数、的值;(2)、判断函数在上的单调性,并给出证明;(3)、若,求证:。