已知直线是半径为3的圆的一条切线,是平面上的一动点,作,垂足为,且;(1)、试问点的轨迹是什么样的曲线?求出该曲线的方程;(2)、过圆心作直线交点的轨迹于、两点,若,求直线的方程。
(本小题满分14分)设椭圆()经过点,其离心率. (Ⅰ)求椭圆的方程; (Ⅱ) 直线交椭圆于两点,且的面积为,求的值.
(本小题满分13分)如图所示,直线l与抛物线y2=x交于A(x1,y1),B(x2,y2)两点,与x轴交于点M,且y1y2=-1, (Ⅰ)求证:点的坐标为; (Ⅱ)求证:OA⊥OB; (Ⅲ)求△AOB面积的最小值。
(本小题满分12分)已知,在与时,都取得极值。 (Ⅰ)求的值; (Ⅱ)若都有恒成立,求c的取值范围。
(本小题满分12分)设是实数,对函数和抛物线:,有如下两个命题:函数的最小值小于0;抛物线上的点到其准线的距离. 已知“”和“”都为假命题,求的取值范围.
(本小题满分12分) 已知为实数,, (Ⅰ)若a=2,求的单调递增区间; (Ⅱ)若,求在[-2,2] 上的最大值和最小值。