解方程组:
解方程。
化简。
如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=900,且EF交正方形外角的平分线CF于点F. (1)图1中若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明); (2)如图2,若点E在线段BC上滑动(不与点B,C重合). ①AE=EF是否总成立?请给出证明; ②在如图2的直角坐标系中,当点E滑动到某处时,点F恰好落在抛物线上,求此时点F的坐标.
已知关于x的一元二次方程有两个实数根x1,x2. (1)求实数k的取值范围; (2)是否存在实数k使得成立?若存在,请求出k的值;若不存在,请说明理由.
如图,△ABC内接于⊙O,∠B=600,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC. (1)求证:PA是⊙O的切线; (2)若PD=,求⊙O的直径.