如图,利用一面墙(墙的长度为20m),用34m长的篱笆围成两个鸡场,中间用一道篱笆隔开,每个鸡场均留一道1m宽的门,设AB的长为x m.(1)若两个鸡场总面积为96m2,求x;(2)若两个鸡场的面积和为S m2,写出S关于x的关系式;并求当x为何值时,两个鸡场面积和最大,最大值是多少?
(1); (2)(x+2)2+x(2﹣x);
(本小题满分12分)已知抛物线经过点A(-3,0),B(1,0)和点C(0,-3). (1)求抛物线的解析式; (2)如图,若抛物线的顶点为P,连接PC并延长与x轴相交于点M,x轴上另一点N,若,求点N的坐标; (3)在上述条件下,在抛物线或坐标轴上是否存在点G,使△GMC与△OPC相似?若存在,求点G的坐标;若不存在,请说明理由.
(本小题满分10分)如图1,直角△ABC中,∠ABC=90°,AB是⊙O的直径,⊙O交AC于点D,过点D的直线交BC于点E,交AB的延长线于点P,∠A=∠PDB. (1)求证:PD是⊙O的切线; (2)若BD=BP=,求图中曲边三角形(阴影部分)的周长; (3)如图2,点M是的中点,连接DM,交AB于点N,若tan∠A=,求的值.
(本小题满分9分)如图,已知双曲线,双曲线经过M点,且. (1)求双曲线与的解析式; (2)若平行于轴的直线交双曲线于点A,交双曲线于点B,在x轴上存在两点C、D(C点在D点的左侧),使以点A、B、C、D为顶点的四边形是矩形,周长等于8,求点C,D的坐标.
(本小题满分7分)已知某企业2014年用水量x(吨)与该月应交的水费y(元)之间的函数关系如图. (1)求2014年水费y(元)关于x(吨)的函数关系式; (2)为贯彻省委“五水共治”发展战略,鼓励企业节约用水,该市自2015年1月开始对月用水量超过96吨的企业加收污水处理费,规定:若企业月用水量x超过96吨,则除按2014年收费标准收取水费外,超过96吨部分每吨另加收元.这样企业每月“用水费用”就可能包括水费和污水处理费.求2015年水费y(元)关于x(吨)的函数关系式.