已知:如图,D是△ABC中BC边上一点,E是AD上的一点, EB=EC,∠1=∠2.求证:AD平分∠BAC.证明:在△AEB和△AEC中,∴△AEB≌△AEC(第一步)∴∠BAE="∠CAE" (第二步)∴ AD平分∠BAC(第三步)问:上面证明过程是否正确?若正确,请写出题中标出的每一步推理根据;若不正确,请指出错在哪一步?并写出你认为正确的推理过程.
化简 .
计算:
已知:如图,在平面直角坐标系中,是直角三角形,,点的坐标分别为,求过点的直线的函数表达式在轴上找一点,连接,使得与相似(不包括全等),并求点的坐标;在⑵的条件下,如分别是和上的动点,连接,设,问是否存在这样的使得与相似,如果存在,请求出的值;如果不存在,请说明理由.
南方地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.求饮用水和蔬菜各有多少件?现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?
如图,△ABC是等边三角形,点D、E分别在BC、AC上,BD=CE,AD与BE相交于点F.试说明:△ABD≌△BCE△AEF与△ABE相似吗?请说明理由.试说明:BD2=AD·DF