已知:如图,D是△ABC中BC边上一点,E是AD上的一点, EB=EC,∠1=∠2.求证:AD平分∠BAC.证明:在△AEB和△AEC中,∴△AEB≌△AEC(第一步)∴∠BAE="∠CAE" (第二步)∴ AD平分∠BAC(第三步)问:上面证明过程是否正确?若正确,请写出题中标出的每一步推理根据;若不正确,请指出错在哪一步?并写出你认为正确的推理过程.
如图,经过原点的抛物线与轴的另一个交点为A.过点作直线轴于点M,交抛物线于点B,过点B作直线BC∥轴与抛物线交于点C(B、C不重合),连结CP.(1)当时,求点A的坐标及BC的长;(2)当时,连结CA,问为何值时?(3)过点P作且,问是否存在,使得点E落在坐标轴上?若存在,求出所有满足要求的的值,并求出相对应的点E坐标;若不存在,请说明理由.
杭城某商厦将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价50x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?
如图:在⊙O中,经过⊙O内一点P有一条弦AB,且AP=4,PB=3,过P点另有一动弦CD,连结AC,DB.设CP=x,PD=y.(1)求证:△ACP∽△DBP; (2)求y关于x的函数解析式;(3)若CD=8时,求S△ACP:S△DBP的值.
已知二次函数,是不为0的常数.(1)除0以外,不论取何值时,这个二次函数的图像一定会经过两个定点,请你求出这两个定点;(2)如果该二次函数的顶点不在直线的右侧,求的取值范围.
已知在正方形的网格中,网线的交点称为格点,如图,点A、B、C都是格点.每个小正方形的边长为1个单位长度,若在网格中建立坐标系,则A的坐标为(-1,3),B的坐标为(1,3),C的坐标为(3,1).(1)利用正方形网格,作过A、B、C三点的圆,并写出圆心O的坐标;(2)在(1)中所作的⊙O外,在这8×8的网格中找到一个格点P,作△PAC,使得△PAC的面积与△ABC的面积相等,并写出点P的坐标.(写出一个即可)