已知:如图,D是△ABC中BC边上一点,E是AD上的一点, EB=EC,∠1=∠2.求证:AD平分∠BAC.证明:在△AEB和△AEC中,∴△AEB≌△AEC(第一步)∴∠BAE="∠CAE" (第二步)∴ AD平分∠BAC(第三步)问:上面证明过程是否正确?若正确,请写出题中标出的每一步推理根据;若不正确,请指出错在哪一步?并写出你认为正确的推理过程.
为加强交通安全教育,某中学对全体学生进行“交通知识”测试,学校随机抽取了部分学生的测试成绩,并根据测试成绩绘制两种统计图表(不完整),请结合图中信息解答下列问题:
学生测试成绩频数分布表
组别
成绩 x 分
人数
A
60 ⩽ x < 70
8
B
70 ⩽ x < 80
m
C
80 ⩽ x < 90
24
D
90 ⩽ x ⩽ 100
n
(1)表中的 m 值为 , n 值为 ;
(2)求扇形统计图中 C 部分所在扇形的圆心角度数;
(3)若测试成绩80分以上(含80分)为优秀,根据调查结果请估计全校2000名学生中测试成绩为优秀的人数.
先化简,再求值: ( x 2 − 1 x 2 − 2 x + 1 − 1 x − 1 ) ÷ x + 2 x − 1 ,其中 x = 27 + | − 2 | − 3 tan 60 ° .
如图,抛物线 y = - 3 4 x 2 + bx + c 与 x 轴交于点 A 和点 C ( - 1 , 0 ) ,与 y 轴交于点 B ( 0 , 3 ) ,连接 AB , BC ,点 P 是抛物线第一象限上的一动点,过点 P 作 PD ⊥ x 轴于点 D ,交 AB 于点 E .
(1)求抛物线的解析式;
(2)如图1,作 PF ⊥ PD 于点 P ,使 PF = 1 2 OA ,以 PE , PF 为邻边作矩形 PEGF .当矩形 PEGF 的面积是 ΔBOC 面积的3倍时,求点 P 的坐标;
(3)如图2,当点 P 运动到抛物线的顶点时,点 Q 在直线 PD 上,若以点 Q 、 A 、 B 为顶点的三角形是锐角三角形,请直接写出点 Q 纵坐标 n 的取值范围.
在 ▱ ABCD 中, ∠ BAD = α , DE 平分 ∠ ADC ,交对角线 AC 于点 G ,交射线 AB 于点 E ,将线段 EB 绕点 E 顺时针旋转 1 2 α 得线段 EP .
(1)如图1,当 α = 120 ° 时,连接 AP ,请直接写出线段 AP 和线段 AC 的数量关系;
(2)如图2,当 α = 90 ° 时,过点 B 作 BF ⊥ EP 于点,连接 AF ,请写出线段 AF , AB , AD 之间的数量关系,并说明理由;
(3)当 α = 120 ° 时,连接 AP ,若 BE = 1 2 AB ,请直接写出 ΔAPE 与 ΔCDG 面积的比值.
如图,在 Rt Δ ABC 中, ∠ ACB = 90 ° ,延长 CA 到点 D ,以 AD 为直径作 ⊙ O ,交 BA 的延长线于点 E ,延长 BC 到点 F ,使 BF = EF .
(1)求证: EF 是 ⊙ O 的切线;
(2)若 OC = 9 , AC = 4 , AE = 8 ,求 BF 的长.