已知:如图,D是△ABC中BC边上一点,E是AD上的一点, EB=EC,∠1=∠2.求证:AD平分∠BAC.证明:在△AEB和△AEC中,∴△AEB≌△AEC(第一步)∴∠BAE="∠CAE" (第二步)∴ AD平分∠BAC(第三步)问:上面证明过程是否正确?若正确,请写出题中标出的每一步推理根据;若不正确,请指出错在哪一步?并写出你认为正确的推理过程.
画出反比例函数和的图象.
如下图,点A,B分别在x轴、y轴上,点D在第一象限内,DC⊥x轴于点C,AO=CD=2,,反比例函数(k>0)的图象过CD的中点E.(1)求证:△AOB≌△DCA.(2)求k的值.(3)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,试判断点G是否在反比例函数的图象上?并说明理由.
如下图,一次函数y1=-x+2的图象与反比例函数的图象相交于A,B两点,与x轴相交于点C,过B作BD⊥x轴于点D.已知,点B的坐标为(m,n).(1)求反比例函数的解析式;(2)请直接写出当x<m时,y2的取值范围.
如下图,一次函数y=kx+b(k≠0)的图象过点P(,0),且与反比例函数(m≠0)的图象相交于点A(-2,1)和点B.(1)求一次函数和反比例函数的解析式.(2)求点B的坐标,问:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?
如下图,在平面直角坐标系xOy中,边长为2的正方形ABCD关于y轴对称,边AD在x轴上,点B在第四象限,直线BD与反比例函数的图象交于点B,E.(1)求反比例函数及直线BD的解析式;(2)求点E的坐标.