已知:如图,D是△ABC中BC边上一点,E是AD上的一点, EB=EC,∠1=∠2.求证:AD平分∠BAC.证明:在△AEB和△AEC中,∴△AEB≌△AEC(第一步)∴∠BAE="∠CAE" (第二步)∴ AD平分∠BAC(第三步)问:上面证明过程是否正确?若正确,请写出题中标出的每一步推理根据;若不正确,请指出错在哪一步?并写出你认为正确的推理过程.
为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.
种类
出行方式
共享单车
步行
公交车
的士
私家车
根据以上信息,回答下列问题:
(1)参与本次问卷调查的市民共有 人,其中选择类的人数有 人;
(2)在扇形统计图中,求类对应扇形圆心角的度数,并补全条形统计图;
(3)该市约有12万人出行,若将,,这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.
如图,已知正七边形,请仅用无刻度的直尺,分别按下列要求画图.
(1)在图1中,画出一个以为边的平行四边形;
(2)在图2中,画出一个以为边的菱形.
端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.
(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?
(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.
(1)计算:;
(2)如图,正方形中,点,,分别在,,上,且.求证:.
如图,抛物线交轴于,两点,交轴于点.直线经过点,.
(1)求抛物线的解析式;
(2)点是抛物线上一动点,过点作轴的垂线,交直线于点,设点的横坐标为.
①当是直角三角形时,求点的坐标;
②作点关于点的对称点,则平面内存在直线,使点,,到该直线的距离都相等.当点在轴右侧的抛物线上,且与点不重合时,请直接写出直线的解析式.,可用含的式子表示)