已知:如图,D是△ABC中BC边上一点,E是AD上的一点, EB=EC,∠1=∠2.求证:AD平分∠BAC.证明:在△AEB和△AEC中,∴△AEB≌△AEC(第一步)∴∠BAE="∠CAE" (第二步)∴ AD平分∠BAC(第三步)问:上面证明过程是否正确?若正确,请写出题中标出的每一步推理根据;若不正确,请指出错在哪一步?并写出你认为正确的推理过程.
菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.
在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了 名同学;(2)条形统计图中,m= ,n= ;(3)扇形统计图中,艺术类读物所在扇形的圆心角是 度;(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?
如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.
解不等式组:,并求出它的整数解的和.
化简:3(2x2﹣y2)﹣2(3y2﹣2x2).