已知:正方形的边长为1,射线与射线交于点,射线与射线交于点,.(1)如图1,当点在线段上时,试猜想线段、、有怎样的数量关系?并证明你的猜想.(2)设,,当点在线段上运动时(不包括点、),如图1,求关于的函数解析式,并指出的取值范围.(3)当点在射线上运动时(不含端点),点在射线上运动.试判断以为圆心以为半径的和以为圆心以为半径的之间的位置关系.(4)当点在延长线上时,设与交于点,如图2.问△与△能否相似,若能相似,求出的值,若不可能相似,请说明理由.
化简:.
小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍.小颖在小亮出发后50min 才乘上缆车,缆车的平均速度为180m/min.设小亮出发x min后行走的路程为y m,图中的折线表示小亮在整个行走过程中y与x的函数关系. (1)小亮行走的总路程是 m,他途中休息了 min; (2)①当50≤x≤80时,求y与x的函数关系式; ②当小颖到达缆车终点时,小亮离缆车终点的路程是多少?
A、B两村生产雪花梨,A村有雪花梨200吨,B村有雪花梨300吨,现将这些雪花梨运动C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨,从A村运往C、D两处的费用分别为40元/吨和45元/吨;从B村运往C、D两处的费用分别为25元/吨和32元/吨.设从A村运往C仓库的雪花梨为x吨,A、B两村往两仓库运雪花梨的运输费用分别为yA元、yB元. (1)请填写下表,并求出yA、yB与x之间的函数关系式; (2)当x为何值时,A村的运输费用比B村少? (3)请问怎样调运,才能使两村的运费之和最小?求出最小值.
如图1,矩形纸片ABCD的边长AB=4cm,AD=2cm.同学小明现将该矩形纸片沿EF折痕,使点A与点C重合,折痕后在其一面着色(如图2),观察图形对比前后变化,回答下列问题: (1)GF FD:(直接填写=、>、<) (2)判断△CEF的形状,并说明理由; (3)小明通过此操作有以下两个结论: ①四边形EBCF的面积为4cm2 ②整个着色部分的面积为5.5cm2 运用所学知识,请论证小明的结论是否正确.
已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.