本小题满分12分)已知实数,.(Ⅰ)求点(a,b)在第一象限的概率;(Ⅱ)求直线与圆有公共点的概率.
(本小题满分12分)已知函数(),.(Ⅰ)求证:在区间上单调递增;(Ⅱ)若,函数在区间上的最大值为,求的解析式,并判断是否有最大值和最小值,请说明理由(参考数据:)
如图,O为坐标原点,点F为抛物线C1:的焦点,且抛物线C1上点P处的切线与圆C2:相切于点Q.(Ⅰ)当直线PQ的方程为时,求抛物线C1的方程;(Ⅱ)当正数变化时,记S1 ,S2分别为△FPQ,△FOQ的面积,求的最小值.
(本小题满分12分)如图,在三棱台中,分别为的中点.(Ⅰ)求证:平面;(Ⅱ)若平面,,,求平面与平面所成角(锐角)的大小.
(本小题满分12分)已知函数(、为常数).(1)若,解不等式;(2)若,当时,恒成立,求的取值范围.
一种抛硬币游戏的规则是:抛掷一枚硬币,每次正面向上得1分,反面向上得2分.(1)设抛掷5次的得分为ξ,求ξ的分布列和数学期望Eξ;(2)求恰好得到n(n∈N*)分的概率.