将连续的奇数1 , 3 , 5 , 7, 9 ,… ,排成如下的数表:(1)设中间的数为a,用代数式表示十字框中的五个数之和;(2)将十字框上、下、左、右平移,可框住另外五个数,这五个数还有这种规律吗?(3)十字框中的五个数的和能等于2007吗?若能,请写出这五个数;若不能,说明理由.
如图,⊙O的圆心在Rt△ABC的直角边AC上,⊙O经过C、D两点,与斜边AB交于点E,连结BO、ED,有BO∥ED,作弦EF⊥AC于G,连结DF.(1)求证:AB为⊙O的切线;(2)若⊙O的半径为5,sin∠DFE=,求EF的长.
如图,菱形 A B C D 的对角线 A C 与 B D 相交于点 O ,点 E 、 F 分别为边 A B 、 A D 的中点,连接 E F 、 O E 、 O F .求证:四边形 A E O F 是菱形.
如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若B、P在直线a的异侧, BM^直线a于点M,CN^直线a于点N,连接PM、PN; (1) 延长MP交CN于点E(如图2)。j求证:△BPM@△CPE;k求证:PM = PN; (2) 若直线a绕点A旋转到图3的位置时,点B、P在直线a的同侧,其它条件不变。此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由; (3) 若直线a绕点A旋转到与BC边平行的位置时,其它条件不变。请直接判断四边形MBCN 的形状及此时PM=PN还成立吗?不必说明理由。
某公司有甲、乙两个绿色农产品种植基地,在收获期这两个基地当天收获的某种农产品, 一部份存入仓库,另一部分运往外地销售。根据经验,该农产品在收获过程中两个种植基地累积总产量y (吨)与收获天数x (天)满足函数关系y=2x+3 (1£x£10且x为整数)。该农产品在收获过程中甲、乙两基地的累积产量分别占两基地累积总产量的百分比和甲、乙两基地累积存入仓库的量分别占甲、乙两基地的累积产量的百分比如下表:
(1) 请用含y的代数式分别表示在收获过程中甲、乙两个基地累积存入仓库的量; (2) 设在收获过程中甲、乙两基地累积存入仓库的该种农产品的总量为p(吨),请求出p(吨)与收获天数x(天)的函数关系式; (3) 在(2)基础上,若仓库内原有该农产品42.6吨,为满足本地市场需求,在此收获期开始 的同时,每天从仓库调出一部分该种农产品投入本地市场,若在本地市场售出的该种农产品总量m(吨)与收获天数x(天)满足函数关系m= -x2+13.2x-1.6 (1£x£10且x为整数)。 问在此收获期内连续销售几天,该农产品库存量达到最低值?最低库存量是多少吨?
阅读下列材料,并解决后面的问题: ★阅读材料: (1) 等高线概念:在地图上,我们把地面上海拔高度相同的点连成的闭合曲线叫等高线。 例如,如图1,把海拔高度是50米、100米、150米的点分别连接起来,就分别形成50米、100米、150米三条等高线。 (2) 利用等高线地形图求坡度的步骤如下:(如图2) 步骤一:根据两点A、B所在的等高线地形图,分别读出点A、B的高度;A、B两点 的铅直距离=点A、B的高度差; 步骤二:量出AB在等高线地形图上的距离为d个单位,若等高线地形图的比例尺为 1:n,则A、B两点的水平距离=dn; 步骤三:AB的坡度==; ★请按照下列求解过程完成填空,并把所得结果直接写在答题卡上。 某中学学生小明和小丁生活在山城,如图3(示意图),小明每天上学从家A经过B沿着公路AB、BP到学校P,小丁每天上学从家C沿着公路CP到学校P。该山城等高线地形图的比例尺为1:50000,在等高线地形图上量得AB=1.8厘米,BP=3.6厘米,CP=4.2厘米。 (1) 分别求出AB、BP、CP的坡度(同一段路中间坡度的微小变化忽略不计); (2) 若他们早晨7点同时步行从家出发,中途不停留,谁先到学校?(假设当坡度在到之间时,小明和小丁步行的平均速度均约为1.3米/秒;当坡度在到之间时,小明和小丁步行的平均速度均约为1米/秒) 解:(1) AB的水平距离=1.8´50000=90000(厘米)=900(米),AB的坡度==; BP的水平距离=3.6´50000=180000(厘米)=1800(米),BP的坡度==; CP的水平距离=4.2´50000=210000(厘米)=2100(米),CP的坡度=" " j ; (2) 因为<<,所以小明在路段AB、BP上步行的平均速度均约为1.3米/秒。 因为 k ,所以小丁在路段CP上步行的平均速度约为 l 米/秒,斜坡 AB的距离=»906(米),斜坡BP的距离=»1811(米),斜 坡CP的距离=»2121(米),所以小明从家到学校的时间==2090(秒)。 小丁从家到学校的时间约为 m 秒。因此, n 先到学校。