(本小题满分10分)选修4—1: 几何证明选讲如图,已知与圆相切于点,经过点的割线交圆于点,的平分线分别交于点.(1)证明:;(2)若,求的值.
数列的前项和为,,.(1)求;(2)求数列的通项;(3)求数列的前项和.
已知命题方程在上有解;命题不等式恒成立,若命题“”是假命题,求的取值范围.
设的内角,,所对的边长分别为,,,且,.(1)当时,求的值;(2)当的面积为时,求的值.
若函数在上为增函数(为常数),则称为区间上的“一阶比增函数”,为的一阶比增区间.(1) 若是上的“一阶比增函数”,求实数的取值范围;(2) 若 (,为常数),且有唯一的零点,求的“一阶比增区间”; (3)若是上的“一阶比增函数”,求证:,
如图,椭圆的左焦点为,右焦点为,过的直线交椭圆于两点, 的周长为8,且面积最大时,为正三角形.(1)求椭圆的方程;(2)设动直线与椭圆有且只有一个公共点,且与直线相交于点,证明:点在以为直径的圆上.