如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF.求证:(1)PE=PF;(2)点P在∠BAC的角平分线上.
已知:如图,在△ABC中,∠ABC=30°,∠ACB=45°AB=8求BC的长.
已知二次函数y=-x2+bx+c的图象如图所示,求此二次函数的解析式和抛物线的顶点坐标.
如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.
解不等式组:
已知点和点在抛物线上. (1)求的值及点的坐标; (2)点在轴上,且满足△是以为直角边的直角三角形,求点的坐标; (3)平移抛物线,记平移后点A的对应点为,点B的对应点为. 点M(2,0)在x轴上,当抛物线向右平移到某个位置时,最短,求此时抛物线的函数解析式.