如图,已知抛物线:和⊙:,过抛物线上一点作两条直线与⊙相切于、两点,分别交抛物线于两点,圆心点到抛物线准线的距离为.(Ⅰ)求抛物线的方程;(Ⅱ)当的角平分线垂直轴时,求直线的斜率;(Ⅲ)若直线在轴上的截距为,求的最小值.
某城市有东西南北四个进入城区主干道的入口,在早高峰时间段,时常发生交通拥堵现象,交警部门统计11月份30天内的拥堵天数,东西南北四个主干道入口的拥堵天数分别是18天,15天,9天,15天.假设每个入口发生拥堵现象互相独立,视频率为概率.(1)求该城市一天中早高峰时间段恰有三个入口发生拥堵的概率;(2)设表示一天中早高峰时间段发生拥堵的主干道入口个数,求的分布列和数学期望.
设数列的前n项和为,满足,且.(Ⅰ)求的通项公式;(Ⅱ)若成等差数列,求证:成等差数列.
选修4-5:不等式选讲已知函数(Ⅰ)a=-3时,求不等式 的解集;(Ⅱ)若关于x的不等式 恒成立,求实数a的取值范围
选修4-4:坐标系与参数方程己知抛物线的顶点M到直线(t为参数)的距离为1(1)求m;(2)若直线与抛物线相交于A,B两点,与y轴交于N点,求的值.
选修4-1:几何证明选讲如图,是的一条切线,切点为,直线,,都是的割线,已知.(1)求证:;(2)若,.求的值.