如图,在Rt△ABC中,∠ACB=90°,AC=6㎝,BC=8㎝,P为BC的中点.动点Q从点P出发,沿射线PC方向以2㎝/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为t s.⑴当t=1.2时,判断直线AB与⊙P的位置关系,并说明理由;⑵已知⊙O为△ABC的外接圆,若⊙P与⊙O相切,求t的值.
学习与探究(1)请在图1的正方形内,作出使的所有点,并简要说明作法.我们可以这样解决问题:利用直径所对的圆周角等于90°,作以AB为直径的圆,则正方形ABCD内部的半圆上所有点(A、B除外)为所求.(2)请在图2的正方形内(含边),画出使的所有的点,尺规作图,不写作法,保留痕迹;(3)如图3,已知矩形ABCD中,AB=4,BC=3,请在矩形内(含边),画出的所有的点,尺规作图,不写作法,保留痕迹.
已知二次函数y=x2-(2a+3)x+4a+2与x轴交于A、B两点,与y轴交于点C,并且点A在点B左侧,位于原点两侧. 若S△ABC的面积为3,求a的值.
在图1、图2中,线段AC=CE,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE的中点是M.如图1,点E在AC的延长线上,点N与点G重合时,点M与点C重合,容易证明FM = MH,FM⊥HM;现将图1中的CE绕点C顺时针旋转一个锐角,得到图2,判断△FMH的形状,并证明你的结论.
某数码卖场销售某种品牌电脑,对于100~500台的大客户订单实行降价促销,每台电脑的售价y(元/台)与数量x(台)的函数关系可以由图中线段AB来表示,每台电脑的进货及运输等成本总共为2250元。(1)写出每台电脑的售价y与台数x的函数关系式:________________;自变量的取值范围是____________且x为整数;(2)若一次政府采购的订单使该卖场共获利12万元,不计其它成本消耗,试求出这次政府采购了多少台电脑;(3)求出每份大客户订单的总获利z(元)与购买数量x(台)之间的函数关系式。当一份订单的购买数量为多少台时,卖场获利最多?
如图,已知△ABC内接于⊙O,∠BAC=60°,AD⊥BC于D,BE⊥AC于E交AD于H,若CF是⊙O的直径,(1)求∠FCB的度数;(2)求证:AH=CF.