如图,已知△ABC内接于⊙O,∠BAC=60°,AD⊥BC于D,BE⊥AC于E交AD于H,若CF是⊙O的直径,(1)求∠FCB的度数;(2)求证:AH=CF.
如图,四边形 OABC 是平行四边形,以点 O 为圆心, OC 为半径的 ⊙ O 与 AB 相切于点 B ,与 AO 相交于点 D , AO 的延长线交 ⊙ O 于点 E ,连接 EB 交 OC 于点 F .求 ∠ C 和 ∠ E 的度数.
2020年5月份,省城太原开展了“活力太原 · 乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张).某品牌电饭煲按进价提高 50 % 后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元.求该电饭煲的进价.
(1)计算: ( - 4 ) 2 × ( - 1 2 ) 3 - ( - 4 + 1 ) .
(2)下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.
x 2 - 9 x 2 + 6 x + 9 - 2 x + 1 2 x + 6
= ( x + 3 ) ( x - 3 ) ( x + 3 ) 2 - 2 x + 1 2 ( x + 3 ) … 第一步
= x - 3 x + 3 - 2 x + 1 2 ( x + 3 ) … 第二步
= 2 ( x - 3 ) 2 ( x + 3 ) - 2 x + 1 2 ( x + 3 ) … 第三步
= 2 x - 6 - ( 2 x + 1 ) 2 ( x + 3 ) … 第四步
= 2 x - 6 - 2 x + 1 2 ( x + 3 ) … 第五步
= - 5 2 x + 6 … 第六步
任务一:填空:
①以上化简步骤中,第 步是进行分式的通分,通分的依据是 .或填为: ;
②第 步开始出现错误,这一步错误的原因是 ;
任务二:请直接写出该分式化简后的正确结果;
任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议.
问题提出
(1)如图1,在 Rt Δ ABC 中, ∠ ACB = 90 ° , AC > BC , ∠ ACB 的平分线交 AB 于点 D .过点 D 分别作 DE ⊥ AC , DF ⊥ BC .垂足分别为 E , F ,则图1中与线段 CE 相等的线段是 .
问题探究
(2)如图2, AB 是半圆 O 的直径, AB = 8 . P 是 AB ̂ 上一点,且 PB ̂ = 2 PA ̂ ,连接 AP , BP . ∠ APB 的平分线交 AB 于点 C ,过点 C 分别作 CE ⊥ AP , CF ⊥ BP ,垂足分别为 E , F ,求线段 CF 的长.
问题解决
(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知 ⊙ O 的直径 AB = 70 m ,点 C 在 ⊙ O 上,且 CA = CB . P 为 AB 上一点,连接 CP 并延长,交 ⊙ O 于点 D .连接 AD , BD .过点 P 分别作 PE ⊥ AD , PF ⊥ BD ,垂足分别为 E , F .按设计要求,四边形 PEDF 内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设 AP 的长为 x ( m ) ,阴影部分的面积为 y ( m 2 ) .
①求 y 与 x 之间的函数关系式;
②按照“少儿活动中心”的设计要求,发现当 AP 的长度为 30 m 时,整体布局比较合理.试求当 AP = 30 m 时.室内活动区(四边形 PEDF ) 的面积.
如图,抛物线 y = x 2 + bx + c 经过点 ( 3 , 12 ) 和 ( - 2 , - 3 ) ,与两坐标轴的交点分别为 A , B , C ,它的对称轴为直线 l .
(1)求该抛物线的表达式;
(2) P 是该抛物线上的点,过点 P 作 l 的垂线,垂足为 D , E 是 l 上的点.要使以 P 、 D 、 E 为顶点的三角形与 ΔAOC 全等,求满足条件的点 P ,点 E 的坐标.