某公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只拿销售提成;方案二:底薪加销售提成(注:销售提成是指从销售每件商品得到的销售额中提取一定数量的费用).设销售商品的数量(件),销售人员的月工资(元).如图所示,为方案一的函数图象,为方案二的函数图象.从图中信息解答如下问题:(1)求、与x的函数关系式;(2)请问方案二中每月付给销售人员的底薪是多少元?(3)如果该公司销售人员小丽当月的月工资要为1800元,那么你认为小丽选用哪种方案销售件数少些?销售件数为多少?
如图,一次函数y=kx+b(k≠0)的图象过点P(,0),且与反比例函数(m≠0)的图象相交于点A(-2,1)和点B. (1)求一次函数和反比例函数的解析式; (2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?
如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,线段AB为半圆O的直径,将Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得△DEF,DF与BC交于点H. (1)求BE的长; (2)求Rt△ABC与△DEF重叠(阴影)部分的面积.
如图,已知双曲线(x>0)经过长方形OABC的边AB的中点F,交BC于点E,且四边形OEBF的面积为2,求k的值.
如图,点O是△ABC外的一点,分别在射线OA,OB,OC上取点A′,B′,C′,使得,连接A′B′,B′C′,C′A′,所得△A′B′C′与△ABC是否相似?证明你的结论.
已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处. (1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA. ①求证:△OCP∽△PDA; ②若△OCP与△PDA的面积比为1︰4,求边AB的长; (2)若图1中的点P恰好是CD边的中点,求∠OAB的度数; (3)如图2,在(1)的条件下,擦去折痕AO、线段OP,连接BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度.