现用a根长度相同的火柴棒,按如图①摆放时可摆成m个正方形,按如图②摆放时可摆成2n个正方形.(1)如图①,当m=3时,a= ;如图②,当m=2时,a= ;(2)当a=37时,若按图①摆放可以摆出了几个正方形?若按图②摆放可以摆出了几个正方形?(3)现有2013根火柴棒,现用若干根火柴棒摆成图①的形状后,剩下的火柴棒刚好可以摆成图②的形状.请你直接写出一种摆放方法,并通过计算验证你的结论.
随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图, A , B 两地被大山阻隔,由 A 地到 B 地需要绕行 C 地,若打通穿山隧道,建成 A , B 两地的直达高铁,可以缩短从 A 地到 B 地的路程.已知: ∠ CAB = 30 ° , ∠ CBA = 45 ° , AC = 640 公里,求隧道打通后与打通前相比,从 A 地到 B 地的路程将约缩短多少公里?(参考数据: 3 ≈ 1 . 7 , 2 ≈ 1 . 4 )
《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.
如图,在 ΔABC 中, ∠ ABC = 90 ° .
(1)作 ∠ ACB 的平分线交 AB 边于点 O ,再以点 O 为圆心, OB 的长为半径作 ⊙ O ;(要求:不写做法,保留作图痕迹)
(2)判断(1)中 AC 与 ⊙ O 的位置关系,直接写出结果.
已知抛物线与 x 轴交于 A ( 6 , 0 ) 、 B ( − 5 4 , 0 ) 两点,与 y 轴交于点 C ,过抛物线上点 M ( 1 , 3 ) 作 MN ⊥ x 轴于点 N ,连接 OM .
(1)求此抛物线的解析式;
(2)如图1,将 ΔOMN 沿 x 轴向右平移 t 个单位 ( 0 ⩽ t ⩽ 5 ) 到△ O ' M ' N ' 的位置, M ' N ' 、 M ' O ' 与直线 AC 分别交于点 E 、 F .
①当点 F 为 M ' O ' 的中点时,求 t 的值;
②如图2,若直线 M ' N ' 与抛物线相交于点 G ,过点 G 作 GH / / M ' O ' 交 AC 于点 H ,试确定线段 EH 是否存在最大值?若存在,求出它的最大值及此时 t 的值;若不存在,请说明理由.
在 Rt Δ ABC 中, ∠ C = 90 ° , Rt Δ ABC 绕点 A 顺时针旋转到 Rt Δ ADE 的位置,点 E 在斜边 AB 上,连接 BD ,过点 D 作 DF ⊥ AC 于点 F .
(1)如图1,若点 F 与点 A 重合,求证: AC = BC ;
(2)若 ∠ DAF = ∠ DBA ,
①如图2,当点 F 在线段 CA 的延长线上时,判断线段 AF 与线段 BE 的数量关系,并说明理由;
②当点 F 在线段 CA 上时,设 BE = x ,请用含 x 的代数式表示线段 AF .