如图(l),在正方形ABCD中,点E、F分别在AB、BC上,且AE=BF,AF与DE交于点G.(1)试探索线段AF、DE的数量和位置关系,写出你的结论并说明理由;(2)连结EF、DF,分别取AE、EF、FD、DA的中点H、I、J、K,则四边形HIJK是什么特殊平行四边形?请在图(2)中补全图形,并说明理由.
如图,∠AOB=30°,OC平分∠AOB,CD⊥OA于D,CE∥AO交OB于E,CE=20cm,求CD的长.
证明能被20∽30之间的两个整数整除.
作图题:有公路同侧、异侧的两个城镇A、B,如下图,电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A、B的距离必须相等,到两条公路、的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置。(保留作图痕迹,不写作法).
先化简,再求值:,其中,.
因式分解:(1);(2).